Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium

Mucormycosis is a difficult to diagnose rare disease with high morbidity and mortality. Diagnosis is often delayed, and disease tends to progress rapidly. Urgent surgical and medical intervention is lifesaving. Guidance on the complex multidisciplinary management has potential to improve prognosis, but approaches differ between health-care settings. From January, 2018, authors from 33 countries in all United Nations regions analysed the published evidence on mucormycosis management and provided consensus recommendations addressing differences between the regions of the world as part of the “One World One Guideline” initiative of the European Confederation of Medical Mycology (ECMM). Diagnostic management does not differ greatly between world regions. Upon suspicion of mucormycosis appropriate imaging is strongly recommended to document extent of disease and is followed by strongly recommended surgical intervention. First-line treatment with high-dose liposomal amphotericin B is strongly recommended, while intravenous isavuconazole and intravenous or delayed release tablet posaconazole are recommended with moderate strength. Both triazoles are strongly recommended salvage treatments. Amphotericin B deoxycholate is recommended against, because of substantial toxicity, but may be the only option in resource limited settings. Management of mucormycosis depends on recognising disease patterns and on early diagnosis. Limited availability of contemporary treatments burdens patients in low and middle income settings. Areas of uncertainty were identified and future research directions specified.

Introduction
Suspected mucormycosis requires urgent intervention, because of the often rapidly progressive and destructive nature of the infection.3,9 Delayed initiation of therapy is associated with increased mortality.1 Maximising survival rates requires rapid diagnostic and therapeutic intervention, including immediate involvement of a multidisciplinary medical, surgical, radiological, and laboratory-based team.1 Readily available guidance is important to ensure efficient diagnosis and treatment, and to optimise patient prognosis. Optimal management depends on recognising disease patterns and the available diagnostic and therapeutic options, which differ between the regions of the world.

Currently available guidelines are limited to specific patient groups in haematology,4 or a specific geographical region,3 or require an update.4,8 Recently, several critical developments have fundamentally changed the management of this condition. These include the development of new and more widely used molecular techniques for the diagnosis of mucormycosis, the licensing of isavuconazole for treatment of mucormycosis, and the availability of new formulations of posaconazole. Moreover, previous guidelines did not include comprehensive clinical and radiological imaging, pathological and histological findings, nor did they provide details on surgery as a core element of mucormycosis management.

The European Confederation of Medical Mycology (ECMM), together with the Mycoses Study Group Education & Research Consortium (MSG ERC), issues this comprehensive guideline document to facilitate clinical decision-making, and simultaneously provides an overview of the areas of uncertainty in the field.10,11 We aimed to address limitations of previous recommendations, by engaging physicians and scientists involved in various aspects of mucormycosis management, representing the fields of microbiology, pathology, radiology, infectious diseases, surgery, paediatrics, haematology, intensive care, dermatology, and pharmacology. In addition, the guideline group comprises experts from all parts of the world and provides management pathways for different regional environments (panel; for further information on guideline development, systematic

Lancet Infect Dis 2019
Published Online November 4, 2019
doi:10.1016/S1473-3099(19)30312-3
Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany (O A Cornely MD, D Arenz PhD, J Vehreschild MD, M G T Vehreschild MD, S C Mellinghoff MD, D Seidel PhD); German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany (O A Cornely, J Vehreschild, M G T Vehreschild); CECAD Cluster of Excellence, University of Cologne, Cologne, Germany (O A Cornely,Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain (A Alastruey-Izquierdo PhD); Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, and the Department of Infectious Diseases, Westmead Hospital, School of Medicine, University of Sydney, Sydney, NSW, Australia (S C-A Chen PhD); Université Paris-Descartes, Faculté de Médecine, APHP, Hôpital European Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France (E Dannaoui MD);
approach, authors and contributors, literature search terms and workflow, see appendix pp 1–4).

Epidemiology of mucormycosis

Patient populations

As medical science advances, the patient populations most at risk for mucormycosis expand accordingly. In the mid-20th century, diabetes evolved as a major risk factor for mucormycosis, while in more recent years, underlying malignancy emerged as another important risk factor due to the increasing number of patients undergoing chemotherapy or cancer immunotherapy.11–13 Furthermore, with more solid organ and haematopoietic stem-cell transplantations (HSCT) being performed, increasing numbers of cases have also been reported in these patient groups.14 At the same time, diabetes continues to represent the predominant risk factor for mucormycosis in settings where health-care access for diabetes management is more limited.15

For further information on patient populations, incidence and prevalence of mucormycosis and incidence rates compared to other mould infections, see appendix pp 4–6.

Pathogens causing mucormycosis

The term mucormycosis is frequently used interchangeably with zygomycosis. The latter term referred to infections caused by fungi of the former phylum Zygomycopta (comprising Mucorales, Entomophthorales, and others), which became obsolete with phylogenetic reanalysis of the kingdom Fungi.16–18 Today, mucormycosis describes infections caused by fungi of the order Mucorales. The most frequently reported pathogens in mucormycosis are Rhizopus spp, Mucor spp, and Lichtheimia spp (formerly of the genera Absidia and Mycocladus), followed by Rhizomucor spp, Cunninghamamella spp, Apophysomyces spp, and Saksenaea spp.11,17,18 Lichtheimia spp were identified as the major cause of mucormycosis in a single hospital in Spain, indicating geographical variation and the need to know local epidemiology.19

Clinical manifestations of mucormycosis

For further information on clinical manifestations, see appendix p 6.

In immunocompromised patients, the main route of infection seems to be through inhalation of sporangiospores causing pulmonary infection. Pulmonary mucormycosis typically develops in patients with profound neutropenia19 and graft-versus-host disease,20 whereas diabetic patients typically present with rhino-orbital disease. Prolonged fever is seen in most patients, although some patients might be asymptomatic.21 Radiological findings often vary in configuration, size, number, and distribution of lesions; typical examples are given below.22–25 Pulmonary mucormycosis can spread
Cutaneous and soft-tissue mucormycosis are the most common forms of mucormycosis in immunocompetent patients, primarily after skin disruption due to traumatic injury (eg from natural disasters, motor vehicle accidents, improvised explosive devices in theatres of war, or iatrogenic sources), surgery, or burns.36–38 Abscesses, skin swelling, necrosis, dry ulcers, and eschars are characteristic presentations (figure 1A and G).39–44 For further information on cutaneous and soft-tissue mucormycosis, see appendix p 6.
Rhino-orbito-cerebral mucormycosis typically develops in patients with diabetes, whereas such patients very rarely develop lung infection. It has been described in haematology patients, too. Rhino-orbito-cerebral infection usually originates from the paranasal sinuses, with bone destruction and subsequent invasion of the orbit, eye, and brain. Unilateral facial oedema, proptosis, and palatal or palpebral fistula developing into necrosis may be present (figure 1B, F).

For further information on rhino-orbito-cerebral mucormycosis see appendix p 6.

Primary gastrointestinal disease is a rare manifestation of mucormycosis that can present with symptoms similar to other common gastrointestinal diseases. However, gastrointestinal mucormycosis is the most common manifestation of mucormycosis in neonates, where it carries a high mortality.

Figure 2: Diagnostic pathway for mucormycosis

Depending on the geographical location not all recommended tests might have regulatory approval for use in clinical settings. HSCT=haematopoietic stem cell transplantation. SOT=solid organ transplantation. PAS=periodic acid Schiff. GMS=Grocott-Gomori’s methenamine-silver stain. qPCR=quantitative PCR. HRM=high resolution melting. ITS=internal transcribed spacer. rDNA=ribosomal DNA.
For further information on gastrointestinal mucormycosis, see appendix p 6.

Cases of isolated renal mucormycosis in immunocompetent hosts are extremely rare, but have been reported from China and India.43–48

For further information on renal and abdominal mucormycosis, see appendix p 7.

Mortality
All-cause mortality rates for mucormycosis range from 40% to 80% with varying rates depending on underlying conditions and sites of infection.11,19,49–51 The highest survival rates are reported in patients with a healthy immune status and those without comorbidities. The poorest prognosis is observed in patients with haematological malignancies and HSCT recipients11 and in patients with extensive burns.51 Disseminated disease, especially to the CNS is often associated with mortality rates higher than 80%.52 Conversely, lower mortality is seen with localised sinus or skin infection, where earlier tissue-based diagnosis is often feasible and surgical debridement may result in cure. Mortality is also high in neonates and other

Figure 3: Radiographic signs of mucormycosis
Four imaging signs can suggest pulmonary mucormycosis in an appropriate clinical setting. (A) Halo sign on CT, a ring of ground glass opacity surrounding a nodular infiltrate, which pathophysiologically represents a region of ischaemia, and which is also typical of invasive pulmonary aspergillosis (arrow). (D & B) Reversed halo sign on CT, also known as inverted halo or atoll sign, an area of ground glass opacity surrounded by a ring of consolidation (arrow). (E) Hypodense sign on MRI, T1 weighted, a central hypodensity in a lung consolidation or nodule, corresponding to a central area of necrosis caused by vascular obstruction with secondary lung infarction and sequestration. Magnetic resonance imaging shows pulmonary nodule with central hypodensity in right upper lobe (arrow), corresponding to a central area of necrosis caused by vascular obstruction with secondary lung infarct and sequestration. (C) Vascular occlusion sign on CT angiography, defined as interrupted vessel at the border of a focal lesion without depiction of the vessel inside the lesion or peripheral to the lesion (arrow). Particularly aggressive forms of mucormycosis are F. Contiguous spread on CT, presence of a mass or consolidation exhibiting invasion of adjacent organs by traversing tissue planes, including the diaphragm, chest wall, pleura, and spleen. (G) Typical rapidly progressive pulmonary mucormycosis on CT, associated with clinical deterioration. Day 8 and Day 15 CT scans showing a reversed halo sign. Images A, C, D, and E courtesy of Bruno Hochhegger, images B, F, and G courtesy of University Hospital Cologne.
Immunocompromised patients with gastrointestinal mucormycosis, possibly related to delay in diagnosis and polymicrobial sepsis. Generally, improved survival is related to earlier diagnosis and application of early, multidisciplinary treatment approaches involving aggressive surgical debridement. Despite improved understanding of the disease and the availability of more therapeutic options, survival rates in mucormycosis remain poor.

Diagnosis
The capability of diagnosing mucormycosis depends on the availability of imaging techniques, trained personnel, and mycological and histological investigations. Patients with suspected mucormycosis should be referred immediately to a facility with the highest care level. In case of any delay, management should be followed by the general guidance document. If all diagnostic options are available, one should follow the management pathway depicted in figure 2.

For further information on diagnosing mucormycosis, see appendix p 7.

Imaging
Radiographical signs suggestive of pulmonary mucormycosis are shown in figure 3. For further information on imaging see appendix p 7.

Recommendations
In patients with haematological malignancy and suspected pulmonary mucormycosis, pulmonary CT scan is recommended for the detection of the reversed halo sign, an area of ground glass opacity surrounded by a ring of consolidation on thoracic CT, or vessel occlusion on CT pulmonary angiography. In diabetic patients with facial pain, sinusitis, proptosis, ophthalmoplegia, or newly diagnosed amaurosis, or both, cranial CT or MRI is strongly recommended to determine if sinusitis is present. If sinusitis is diagnosed, endoscopy is strongly recommended to diagnose mucormycosis. If disease of the eye or brain is suspected, MRI should be conducted in lieu of a CT scan due to substantially greater sensitivity. If mucormycosis is a potential diagnosis, biopsy is strongly recommended. Once mucormycosis has been proven in a patient with underlying malignancy, cranial, thoracic and abdominal imaging studies to determine the extent of disease are recommended with moderate strength. In view of the rapid progress of mucormycosis, weekly CT scans are strongly recommended, particularly in unstable patients (appendix p 7).

Histopathology in mucormycosis
Evidence
Mucormycosis is usually suspected based on results of direct microscopy of clinical specimens, preferably stained with fluorescent brighteners calcilofuor white (Sigma Aldrich, St Louis, MO, USA) or blankophor (Tanatax Chemicals, Ede, The Netherlands). To confirm an infection, non-pigmented hyphae showing tissue invasion must be shown in tissue sections stained with haematoxylin-eosin (HE), periodic acid-Schiff stain (PAS), or Grocott-Gomori's methenamine-silver

Figure 6: Hyphal morphology in mucormycosis and aspergillosis
(A) Typical hyphal morphology in mucormycosis lesions (GMS, x200). Mucorales hyphae are at least 6–16 µm wide, ribbon-like, pauci-septate, and branch irregularly. (B) Hyphal structure covered with Splendore-Hoeppli phenomenon (HE, x1000). The eosinophilic material likely represents antigen-antibody complexes. First described by Splendore in 1908, and by Hoeppli in 1932. (C) Typical hyphal morphology in aspergillus lesions (PAS, x200). Aspergillus hyphae are 3–5 µm wide, regularly septated, with dichotomous branching. (D–F) Sizes and branching angles for Mucorales and aspergillus stained by calcofluor-white. D and F correspond to Rhizopus arrhizus and E to Aspergillus fumigatus. Measurements correspond to the size of the white lines; hyphal diameter were performed with the Leica software LAS-AF and are expressed in µm. Diagnosis needs to be confirmed by culture, molecular techniques, or both. Images A–C courtesy of Henrik E Jensen and images D–F courtesy of Ana Alastruey-Izquierdo.
The lesions of mucormycosis are characteristic but non-specific.\(^{37–44}\) In acute lesions, haemorrhagic infarction, coagulation necrosis, angioinvasion, infiltration by neutrophils (in non-neutropenic hosts), and perineural invasion are characteristic features;\(^{45}\) whereas, in chronic lesions, a pyogranulomatous inflammation with presence of giant cells, and sometimes hyphae covered by the Splendore-Hoepli phenomenon,\(^{46,47}\) which describes deeply eosinophilic material surrounding the pathogen, are seen (figure A–C).\(^{37,48–49}\)

Obtaining a diagnosis of mucormycosis on morphological basis is challenging, and the most common cause for incorrect morphological diagnosis is the misidentification of Mucorales as Aspergillus spp (figure A–C).\(^{217,69}\) The application of immunohistochemistry with commercially available monoclonal antibodies\(^{38,70}\)
Review

or PCR techniques on either fresh or formalin-fixed paraffin-embedded tissue have been shown to be highly specific, although a variation in sensitivity has been reported, in addition, these tests might not be widely available (appendix p 9).

Recommendations

Hyphae of Mucorales can be distinguished from septate hyaline moulds due to their greater width and irregular pattern of branching. However, there are no data available to describe the accuracy of distinguishing Mucorales from other moulds based on these characteristics. Therefore, it is strongly recommended to confirm the diagnosis of mucormycosis in tissue by culture or by application of molecular or in-situ identification techniques, at centres where such assays are available (appendix p 9).

For further information on antigen biomarkers, see appendix p 10.

Culture and microscopy

Recommendations

Culture of specimens is strongly recommended for genus and species identification, and for antifungal susceptibility testing. Homogenisation of tissue should be avoided before culturing. Incubation at 30°C and 37°C separately is strongly recommended (appendix p 11). Direct microscopy with fluorescent brighteners from clinical specimens is strongly recommended mainly focusing on septation, branching angle, and hyphal width.
For further information on culture and microscopy, see appendix p 10.

Susceptibility testing
For further information on susceptibility testing, see appendix p 11–12.

Recommendations
The use of standard methods for antifungal susceptibility testing to guide antifungal treatment in Mucorales is marginally supported and may be clinically useful in cases of treatment failure. However, we strongly recommend the use of these methods primarily to establish epidemiological knowledge in the field. Currently, commercial methods such as E-test are recommended for use in mucormycosis with marginal strength only (appendix p 11).

Molecular-based methods for direct detection
For further information on molecular-based methods, see appendix p 13.

Currently, in the absence of a standardised test, the use of molecular methods on both fresh clinical material and paraffin sections for the diagnosis of mucormycosis is moderately supported. Fresh material is preferred over paraffin-embedded tissue because formalin damages DNA.

Navarangpura, Ahmedabad, India (A Patel MD); Institute of Hematology and Blood Transfusion, Prague, Czech Republic (Z Racil MD); UK NHS Mycology Reference Centre, Manchester University NHS Foundation Trust, Manchester, UK (M Richardson PhD); Hämatologie & Internistische Onkologie, Lukas-Krankenhaus Bünde, Onkologische Ambulanz, Bünde, Germany (M Ruhnke MD); Center of Expertise in Microbiology,
Detection of DNA in serum as well as in other body fluids is very promising but because of lack of standardisation supported with moderate strength only (appendix p 13).

Genus and species identification
Evidence
Although some genera, such as Cunninghamella, can be associated with an increased mortality rate in patients and have been shown to be more virulent in experimental models, there is currently sparse evidence that identification of the causative Mucorales to the genus or species level, or both, could guide the choice of the antifungal treatment.

By contrast, identification to the species level is of importance for improved epidemiological knowledge of the disease. In particular, the clinical picture can be different depending on the species. Moreover, species identification is valuable for investigation of health care-associated mucormycosis and outbreaks.

For further information on genus and species identification, see appendix p 14–15.

Recommendations
Identification to the genus and species level is strongly supported for improved epidemiological understanding of mucormycosis. Guiding treatment by identification to the genus level is supported with marginal strength. Molecular identification is strongly supported and preferred over morphology. Because the best technique for molecular identification, internal transcribed spacer (ITS) sequencing is strongly supported. Matrix assisted laser desorption ionisation time of flight (MALDI-TOF) identification is moderately supported because it relies mainly on in-house databases, and many laboratories do not have that capacity (appendix p 15).

Treatment approaches to mucormycosis
The ability to treat mucormycosis effectively depends on the availability of the surgical techniques and antifungal drugs discussed below. If all treatment options are available one should follow the management pathways detailed in figure 5A and appendix p 25. If local or regional capabilities differ, less comprehensive pathways need to be followed; examples are given in figure 5B, C, and appendix p 26.

Surgical treatment for mucormycosis
For further information on surgical treatment, see appendix p 16.

Recommendations—The guideline group strongly supports an early complete surgical treatment for mucormycosis whenever possible, in addition to systemic antifungal treatment. Resection or debridement should be repeated as required (appendix p 16).

Drug treatment for mucormycosis
Prophylaxis
For further information on prophylaxis, see appendix p 18.

Secondary prophylaxis
For further information on secondary prophylaxis, see appendix p 18.

Recommendations—In immunosuppressed patients with previous diagnosis of mucormycosis, surgical resection and continuation or restart of the last drug effective in that patient is strongly recommended.

Fever-driven treatment
For further information on fever-driven treatment, see appendix p 19.

Recommendations—The guideline group recommends against initiation of treatment for mucormycosis when fever of unknown origin is the sole evidence of infection.

Diagnosis-driven treatment
For further information on fever-driven treatment, see appendix p 19.

Recommendations—In any immunocompromised patient with suspected mucormycosis, immediate treatment initiation is strongly recommended. Every attempt to attain a diagnosis should be made at the time of initiation of therapy, but should not delay therapy.

First-line antifungal monotherapy
Evidence—In several case series, the use of liposomal amphotericin B successfully treated mucormycosis with various organ involvement patterns. Daily doses ranged from 1 mg/kg per day to 10 mg/kg per day. Recipients of increased doses tended to have increased response rates. Patients receiving 10 mg/kg per day had substantial toxicity increases that were mostly reversible. Doses higher than 10 mg/kg per day did not result in higher blood concentrations.

In CNS involvement, animal models and the above observations support use of liposomal amphotericin B at 10 mg/kg per day. In the absence of CNS involvement, amphotericin B lipid complex 5 mg/kg per day has been used successfully. In kidney transplant recipients, amphotericin B lipid complex 10 mg/kg per day has been given. Amphotericin B deoxycholate has been the drug of choice for decades. It is effective, but its use is limited by its substantial toxicity, specifically in the doses and treatment durations needed for mucormycosis (table 2).

Use of amphotericin B deoxycholate should be restricted to settings in which there is no other antifungal therapy available.
The efficacy of isavuconazole was similar to an external matched control group treated with amphotericin B formulations. This limited size study enrolled 21 patients with isavuconazole first-line treatment, and compared efficacy results to 33 matched patients from the FungiScope registry. As a result, isavuconazole has been licensed in the USA for first-line treatment of mucormycosis. By contrast with other mould-active azoles, isavuconazole is less hepatotoxic although it can result in shortening the QTc interval. Posaconazole oral suspension has been used successfully in first-line treatment. Recently, concerns about its oral bioavailability led to the development of a delayed release tablet with improved exposure and an intravenous infusion formulation (table 2).

Table 2: Recommendations on first-line antifungal monotherapy for mucormycosis by population type

<table>
<thead>
<tr>
<th>Intention</th>
<th>Intervention</th>
<th>SOR</th>
<th>QOE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>To cure and to increase survival rates Amphotericin B, any formulation, escalation to full dose over days</td>
<td>D</td>
<td>IIu</td>
<td>Chamilos (N=70, give full daily dose from day 1)</td>
</tr>
<tr>
<td>Any</td>
<td>To cure and to increase survival rates Amphotericin B, liposomal, 5–10 mg/kg per day</td>
<td>A</td>
<td>III</td>
<td>Gleeson11+ (N=16, haematology); Pagano11+ (N=5); Comely+ (N=4); Pagano11+ (N=4); Riping+ (N=21); Shohami+ (N=28); Skada+ (N=130); Lanternier+ (N=34, 18 haematology, six diabetic); Kyvernitakis+ (N=41); Stanzani+ (N=9), increased renal toxicity with cyclosporine</td>
</tr>
<tr>
<td>CNS involvement</td>
<td>To cure Amphotericin B, liposomal, 10 mg/kg per day, initial 28 days</td>
<td>A</td>
<td>III</td>
<td>Ibrahim+ (Animal); Lanternier+ (N=9)</td>
</tr>
<tr>
<td>SOT adults</td>
<td>To cure Amphotericin B, lipid formulation; dose not given</td>
<td>A</td>
<td>III</td>
<td>Singh+ (N=25); Sun+ (N=14); Lanternier+ (N=3)</td>
</tr>
<tr>
<td>SOT adults</td>
<td>To cure Amphotericin B, lipid complex; 10 mg/kg per day</td>
<td>A</td>
<td>III</td>
<td>Forrest+ (N=6, 3 of 6 died)</td>
</tr>
<tr>
<td>Any, without CNS involvement</td>
<td>To cure Amphotericin B, lipid complex; 5 mg/kg per day</td>
<td>B</td>
<td>IIu</td>
<td>Larkin+ (N=10); Ibrahim+ (animal); Skada+ (N=7)</td>
</tr>
<tr>
<td>Haematological malignancy</td>
<td>To cure Amphotericin B, liposomal; 1–5 mg/kg per day or surgery</td>
<td>C</td>
<td>III</td>
<td>Nosani+ (N=13, 8 of 13 treated, 5/8 died); Li+ (N=7, 2 of 7 died)</td>
</tr>
<tr>
<td>Any</td>
<td>To cure Isavuconazole PO or IV; 3 × 200 mg/day 1–2, 1 × 200 mg/day from day 3</td>
<td>B</td>
<td>III</td>
<td>Marty+ (N=21, 11 haematology, 4 diabetes, overall mortality comparable to amphotericin B formulations)</td>
</tr>
<tr>
<td>Any</td>
<td>To cure Posaconazole DR tablet or intravenously 2 × 300 mg/day 1, 1 × 300 mg/day from day 2</td>
<td>B</td>
<td>IIu</td>
<td>Duarte+; Maertens+; Comely+; Comely+ (higher trough levels than oral suspension, intravenous bridging when oral dosing not feasible)</td>
</tr>
<tr>
<td>Any</td>
<td>To cure Posaconazole oral suspension; 4 × 200 mg/day or 2 × 400 mg/day</td>
<td>C</td>
<td>IIu</td>
<td>Riping+ (N=8); Skada+ (N=12); Dannaou+ (animal, emphasises preference of amphotericin B, liposomal)</td>
</tr>
<tr>
<td>Any</td>
<td>To cure Amphotericin B, deoxycholate; any dose (if alternative therapy available)</td>
<td>D</td>
<td>IIu</td>
<td>Walsh+ (renal toxicity); Pagano+ (N=9); Roden+ (N=52); Ullmann+ (renal toxicity); Chakrabarti+ (N=10); Skada+ (N=21)</td>
</tr>
<tr>
<td>Orbital mucormycosis</td>
<td>To cure Retrobulbar injection of amphotericin B deoxycholate in addition to systemic therapy</td>
<td>D</td>
<td>III</td>
<td>Hirabayashi+ (N=1, post-injection inflammatory response, risk for acute compartment syndrome)</td>
</tr>
</tbody>
</table>

IV=intravenous. PO=per os (taken orally). SOR=strength of recommendation. QOE=quality of evidence. N=number of individuals. SOT=solid organ transplantation. DR=delayed release.

First-line antifungal combination therapy

Evidence—In animal models, some antifungal combinations have shown the potential to improve cure and survival rates with no antagonism noted. Results from some patient series are promising. However, a historical control study and a propensity score analysis failed to show benefits of double and triple antifungal combinations in patients with haematological malignancy. In trauma patients, specifically in blast injury, more than one mould species can cause mixed infections.
infection warranting empirical combination therapy with liposomal amphotericin B and either posaconazole or voriconazole. The down-sides of combination therapy are unclear aside from potential added toxicity, drug interactions, and cost.

Recommendations—There are no definitive data to guide the use of antifungal combination therapy. Limited data support combinations of polyenes and azoles or polyenes plus echinocandins. Combination therapy can be rationally given due to lack of enhanced toxicity with possible but unproven benefit; however, data are too limited to support this beyond a marginal recommendation.

For further information on first-line combination therapy, see appendix p 19.

Antifungal salvage treatment

Evidence—In general, there are two drug-related reasons for treatment failures, refractory mucormycosis or toxicity of first-line regimens—ie, intolerance to a drug. For amphotericin B formulations, particularly renal toxicity can be a limiting factor, while for the azole class hepatic toxicity has the highest prevalence. Toxicity can be caused by previous antifungals, or expected due to pre-existing organ damage. Only two drug classes have proven efficacy in mucormycosis, thus salvage treatment mostly means switching to the other class. Isavuconazole salvage treatment was successful in both clinical scenarios, refractory disease, and intolerance or toxicity. In Europe, isavuconazole is licenced for salvage treatment of mucormycosis only. Posaconazole treatment with oral suspension achieved cure in two non-randomised clinical trials and in case series. Liposomal amphotericin B was effective as salvage treatment, as was amphotericin B lipid complex and amphotericin B colloidal dispersion.

Recommendations—Isavuconazole is strongly supported as salvage treatment. Posaconazole delayed release tablets or infusions are strongly supported for salvage treatment, and when available should be preferred over posaconazole oral suspension, which in turn is marginally supported for salvage treatment. In cases of primary treatment failure with isavuconazole or posaconazole, the guideline group supports recommendations for all three lipid-based amphotericin B formulations with strong to moderate strength.

For further information on salvage treatment, see appendix p 20.

Treatment duration for mucormycosis

Evidence—The duration of therapy necessary to treat mucormycosis is unknown. In general, weeks to months of therapy are given. If immune defect is resolved—eg diabetes is controlled, neutropenia definitively resolved, immunosuppression can be tapered or stopped, therapy can be continued until resolution of signs and symptoms of infection, and substantial radiographical improvement. Median duration of isavuconazole first-line or salvage treatment was 84 days intravenous or oral route or both. Across several posaconazole oral suspension studies, treatment duration ranged from 1 week to almost 3 years, mean duration was approximately 6 months. The wide range reflects the pattern of organs involved, with competing risks from underlying conditions. Late relapse in long-term survivors has been documented (appendix p 21).

Recommendations—The guideline group strongly supports treatment until permanent reversal of immunosuppression and complete response on imaging, which might be difficult to determine because of scarring and postoperative changes. Treatment duration is a personalised decision. There is moderate support for intravenous treatment until stable disease is achieved. When switching to oral treatment, use of isavuconazole or posaconazole delayed release tablets is strongly supported. Posaconazole oral suspension can be used, but is marginally supported, especially when formulations with higher exposure are available (appendix p 21).

Therapeutic drug monitoring in mucormycosis (appendix p 22), specific considerations on treatment of mucormycosis in children (appendix p 23), adjunctive treatments for mucormycosis (appendix p 27), intensive care and critically ill patients with mucormycosis (appendix p 29), health economics (appendix p 29), and future directions (appendix p 30) are available in the appendix where indicated.
approved the final manuscript, and are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Declaration of interests
OAC reports research grants from Astelion, Amgen, Arsanis, Astellas, AstraZeneca, Basilea, Bayer, Cidara, F2G, Gilead, GSK, Leeds University, Matinas, Medicines Company, MedPace, Melinta, Merck/MSD, Millenium, Pfizer, Rempex, Roche, Sanofi Pasteur, Scynexis, Seres; is a consultant to Alleea Therapeutics, Amynx, Astelion, Astellas, Basilea, Cidara, Da Volterra, Entasis Therapeutics, F2G, Gilead, IQVIA, Janssen, Matinas, Menarini, Merck/MSD, Paratek, PSI, Scynexis, Seres, Summit, Tetraphase, Vical, and received lecture honoraria from Astellas, Basilea, Gilead, Merck/MSD and Pfizer. ED reports grants from Gilead, MSD; personal fees from Pfizer, Astellas; non-financial support from MSD and Pfizer. AM reports grants from Sanofi and ROCHE. AAL reports grants and personal fees from Gilead, personal fees from Pfizer, grants from F2G, grants from Scynexis, personal fees from Astellas, personal fees from MSD. SAA reports grants from Pfizer. SCAC reports grants from MSD Australia. MH reports personal fees from Basilea, Merck, Practitioner Network; and grants and personal fees from Gilead. KL reports grants, personal fees, and non-financial support from MSD, Gilead, and Pfizer; and personal fees from Abbott. REL reports personal fees from Gilead and grants from Merck. DCS reports grants from Merck and personal fees from Merck, Astellas, and AVR. AA reports non-financial support from MSD, Gilead, and Pfizer; and personal fees from Gilead sciences and Pathoquest. RB reports grants and personal fees from Merck and Pfizer. SB reports grants from MSD; personal fees from Gilead and other from Pfizer. EC reports personal fees from Astellas and Basilea. MC reports personal fees from Astellas, Pfizer, LF Asta, Meiji, and MSD, and non-financial support from Astellas, Pfizer, and LF Asia. ALC reports grants from Astellas; grants, personal fees, and non-financial support from Pfizer; personal fees and non-financial support from Biotoscan; personal fees and non-financial support from MSD; and personal fees and non-financial support from F2G. LD reports personal fees and non-financial support from MSD and Pfizer; and non-financial support from Teva. AHG reports grants and personal fees from Gilead, Merck, Sharp & Dohme, and Pfizer; and personal fees from Astellas and Basilea. JG reports grants from Scynexis, CIDARA; and personal fees from Gilead, Pfizer, Astellas, MSD, and United Medical. CPhI reports personal fees from Schering-Plough; and grants and personal fees from Pfizer, Boehringer Ingelhein, Siemens; personal fees from Basilea, Novartis, MSD, Lilly, Intermune, Fresenius, Essex, AstraZeneca, Bracco, MEDA Pharma, Chiesi, Coviden, Pierre Fabre, Grifols, Bayer; and grants from Merck and Pfizer. German Center for Lung Research. ASI reports grants from Amplex Pharmaceuticals, grants from Astellas Pharma USA and is founder and shareholder from VitaLearn Biosciences. NR reports personal fees from Astellas, Gilead, Merck, and Pfizer. FLN reports personal fees from Gilead, MSD, and Basilea. CLF reports reports grants from Gilead and Astellas; and personal fees from Gilead, Merck Sharp & Dohme, Basilea. DGL reports consultant fees from Astellas, GILEAD, MSD, Pfizer, and Yuhani; has served as a board member for Gilead and Yuhani; and has received research support, travel support and payment for lectures, including support from Service’s bureaus, from Astellas, GILEAD, MSD, Pfizer, and Yuhani. TL reports personal fees from Gilead; personal fees and non-financial support from Astellas, Gilead, and MSD; and personal fees from Basilea. GM reports personal fees from F2G, Palmodicine, and Amplex. JM reports grants from Astellas, Gilead, MSD, and Pfizer. COM reports grants from Gilead and Merck. MN reports grants from Pfizer; and personal fees from Pfizer, Scynexis, Cidara, Teva, United Medical, MSD, and Janssen. LP reports grants from Astellas. MR reports personal fees from Gilead, MSD, and Pfizer. MAP reports grants from Pfizer; and personal fees from Gilead, United Medical. ZR reports grants from Astellas and Teva. MRR reports personal fees from Gilead, MSD, and Pfizer. ER reports personal fees from Gilead, Pfizer, Merck, and Sanofi; personal fees and non-financial support from Pfizer, Merck, and Astellas. MRR reports personal fees from Scynexis, Daiichi Sankyo, and Kedplasma GmbH. JS reports personal fees from Pfizer and MSD. MS reports grants and personal fees from Gilead and Merck. BS reports personal fees from Cempra, Bayer, Forge, Shionogi, Alexion, Synthetic Biologics, Paratek, Ovagen, Accurex, and Bioversys; and is shareholder for Motif, BioAIM, Synthetic Biologics, Myconed, and ExBag.

WS reports fees from Astellas and Merck. BHT reports grants from Pfizer. AJU reports personal fees from MSD, Basilea, and Aicuris. JJJ reports personal fees from Merck/MSD, Gilead, Pfizer, Astellas Pharma, Basilea, Deutsches Zentrum für Infektionsforschung, Uniklinik Freiburg/Kongress und Kommunikation, Akademie für Infektionsmedizin, Universität Manchester, Deutsche Gesellschaft für Infektiologie, Arztekammer Nordrhein, Uniklinik Aachen, Back Bay Strategies, and Deutsche Gesellschaft für Innere Medizin; and grants from Merck/MSD, Gilead, Pfizer, Astellas Pharma, Basilea, Deutsches Zentrum für Infektionsforschung, Bundesministerium für Bildung und Forschung, MJCTV reports having been on speakers’ bureaus for Pfizer, MSD/Meck, Gilead Sciences, Organobalance and Astellas Pharma; received research funding from 3M, Astellas Pharma DaVolterra and Gilead Sciences; and is a consultant to Berlin Chemie, MSD/Merck and Astellas Pharma. TJW reports grants from Amplex, Astellas, Merck, Scynexis, Allergan, Medicines Company, Lediant, and Tetraphase; and having served on Advisory Boards of Astellas, Merck, Scynexis, Allergan, Medicines. PJJ reports personal fees from Gilead; MSD, and grants from Bruker. NPW reports grants from Astellas, bioMerieux, F2G, and Vianet; and personal fees from Mayne Pharma. All other authors declare no competing interests.

Acknowledgments
The following authors are fellows of the European Confederation of Medical Mycology (ECMM): OAC, AAI, SCAC, ED, BH, MH, HEJ, KL, DCS, AC, MA, AA, AMSA, SAA, HB, SC, AC, ALC, LD, AHG, ASI, SSK, NK, ML, FI, FL, CLF, MM, GM, JFM, JM, CM, MN, RO, LP, AP, MR, ER, SS, JS, JJV, MJCTV, TJW, PLW, and NPW. The following authors are members of the Mycoses Study Group and Research Consortium (MSG ERC): OAC, SCAC, DCS, ASI, BS, WS, TJW, NPW, TZ. The following authors are members of the Excellence Center (EC) for Medical Mycology of the European Confederation of Medical Mycology (ECMM): OAC, DA, SCM, DS, JJV, MJCTV, KL, ML, CL-F, JFM, and MR. We thank Valentina Arsic Arsenijevic, Neoh Chin Fen, and Adilia Warris for review and valuable contributions to the manuscript. The authors are indebted to Kerstin Alibus, Susann Blossfeld, and Jon Salmon-Garcia for technical support with this manuscript.

References

© 2019 Elsevier Ltd. All rights reserved.